Dynamic modelling and natural characteristic analysis of cycloid ball transmission using lumped stiffness method

نویسندگان

  • Peng Zhang
  • Bingbing Bao
  • Meng Wang
چکیده

The vibration of robot joint reducer is the main factor that causes vibration or motion error of robot system. To improve the dynamic precision of robot system, the cycloid ball transmission used in robot joint is selected as study object in this paper. An efficient dynamic modelling method is presented-lumped stiffness method. Based on lumped stiffness method, a translational-torsional coupling dynamics model of cycloid ball transmission system is established. Mesh stiffness variation excitation, damping of system are all intrinsically considered in the model. The dynamic equation of system is derived by means of relative displacement relationship among different components. Then, the natural frequencies and vibration modes of the derivative system are presented by solving the associated eigenvalue problem. Finally, the influence of the main structural parameters on the natural frequency of the system is analysed. The present research can provide a new idea for dynamic analysis of robot joint reducer and provide a more simplify dynamic modelling method for robot system with joint reducer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crack Influences on the Static and Dynamic Characteristic of a Micro-Beam Subjected to Electro Statically Loading

In the present work the pull-in voltage of a micro cracked cantilever beam subjected to nonlinear electrostatic pressure was studied. Two mathematical models were employed for modeling the problem: a lumped mass model and a classical beam model. The effect of crack in the lumped mass model is the reduction of the effective stiffness of the beam and in the beam model; the crack is modeled as a m...

متن کامل

University of Huddersfield Repository Moreno - Castaneda , V . Y . , Pislaru , Crinela and Ford , Derek G . Modelling and simulation of the dynamic behaviour of a ball screw system using transmission line modelling technique

This paper presents a new approach for the modelling of a screw shaft including the axial and torsional dynamics in the same model. The model includes the distributed parameter dynamics of the ball screw system and the effect of mass distribution. This is based on the flexibility of the Transmission Line Matrix Method (TLM) to develop lumped and distributed parameter systems. The procedure for ...

متن کامل

Hybrid modeling and analysis of structural dynamic of a ball screw feed drive system

Ball screw drives are widely used as the motion delivery mechanism due to their high stiffness and high accuracy. As the speed and precision requirements from machine tools increase, the effects of the structural flexibility of the drives on controller performance are becoming increasingly significant. The vibrations adversely affect the positioning accuracy and performance of the drive. The na...

متن کامل

Dynamic Stiffness Method for Free Vibration of Moderately Thick Functionally Graded Plates

In this study, a dynamic stiffness method for free vibration analysis of moderately thick function-ally graded material plates is developed. The elasticity modulus and mass density of the plate are assumed to vary according to a power-law distribution in terms of the volume fractions of the constituents whereas Poisson’s ratio is constant. Due to the variation of the elastic properties through ...

متن کامل

A Simple Method for Modeling Open Cracked Beam

Abstract A simple method is proposed to model the open cracked beam structures. In this method, crack is modeled as a beam element. Hence cracked beam can be assumed to be a beam with stepped cross sections, and problem of determining natural frequency and mode shape of cracked beam, can be solved as determining these characteristics for a beam with different length and cross section. With this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2017